搜索
cad2007下载
软件下载
solidworks下载
proe下载
机械标准
机械招聘
机械图纸
机械百科
机械交易网
网站建设
机械设计手册
proe视频教程
cad2013视频教程
solidworks2008视频教程
CAD2004视频教程

[原创] cutting tool material

[复制链接]
查看: 817|回复: 0

该用户从未签到

发表于 2014-6-27 14:27:20 | 显示全部楼层 |阅读模式
本帖最后由 上海力锐 于 2014-6-27 14:33 编辑

To produce quality product, a cutting tool must have three characteristics:


  • Hardness: hardness and strength at high temperatures.
  • Toughness: so that tools do not chip or fracture.
  • Wear resistance: having acceptable tool life before needing to be replaced.
Cutting tool materials can be divided into two main categories: stable and unstable.
Unstable materials (usually steels) are substances that start at a relatively low hardness point and are then heat treated to promote the growth of hard particles (usually carbides) inside the original matrix, which increases the overall hardness of the material at the expense of some its original toughness. Since heat is the mechanism to alter the structure of the substance and at the same time the cutting action produces a lot of heat, such substances is inherently unstable under machining conditions.
Stable materials (usually tungsten carbide) are substances that remain relatively stable under the heat produced by most machining conditions, as they don't attain their hardness through heat. They wear down due to abrasion, but generally don't change their properties much during use.
Most stable materials are hard enough to break before flexing, which makes them very fragile. To avoid chipping at the cutting edge, some tools made of such materials are finished with a slightly blunt edge, which results in higher cutting forces due to an increased shear area, however, tungsten carbide has the ability to attain a significantly sharper cutting edge than tooling steel for uses such as ultrasonic machining of composites. Fragility combined with high cutting forces results in most stable materials being unsuitable for use in anything but large, heavy and rigid machinery and fixtures.
Unstable materials, being generally softer and thus tougher, generally can stand a bit of flexing without breaking, which makes them much more suitable for unfavorable machining conditions, such as those encountered in hand tools and light machinery.
Tool material
Properties
Carbon tool steels
Unstable. Very inexpensive. Extremely sensitive to heat. Mostly obsolete in today's commercial machining, although it is still commonly found in non-intensive applications such as hobbyist or MRO machining, where economy-grade drill bits, taps and dies, hacksaw blades, and reamers are still usually made of it (because of its affordability). Hardness up to about HRC 65. Sharp cutting edges possible.
High speed steel (HSS)
Unstable. Inexpensive. Retains hardness at moderate temperatures. The most common cutting tool material used today. Used extensively on drill bits and taps. Hardness up to about HRC 67. Sharp cutting edges possible.
HSS cobalt
Unstable. Moderately expensive. The high cobalt versions of high speed steel are very resistant to heat and thus excellent for machining abrasive and/or work hardening materials such as titanium and stainless steel. Used extensively on milling cutters and drill bits. Hardness up to about HRC 70. Sharp cutting edges possible.
Cast cobalt alloys
Stable. Expensive. Somewhat fragile. Despite its stability it doesn't allow for high machining speed due to low hardness. Not used much. Hardness up to about HRC 65. Sharp cutting edges possible.
Cemented carbide
Stable. Moderately expensive. The most common material used in the industry today. It is offered in several "grades" containing different proportions of tungsten carbide and binder (usually cobalt). High resistance to abrasion. High solubility in iron requires the additions of tantalum carbide and niobium carbide for steel usage. Its main use is in turning tool bits although it is very common in milling cutters and saw blades. Hardness up to about HRC 90. Sharp edges generally not recommended.
Ceramics
Stable. Moderately inexpensive. Chemically inert and extremely resistant to heat, ceramics are usually desirable in high speed applications, the only drawback being their high fragility. Ceramics are considered unpredictable under unfavorable conditions. The most common ceramic materials are based on alumina (aluminum oxide), silicon nitride and silicon carbide. Used almost exclusively on turning tool bits. Hardness up to about HRC 93. Sharp cutting edges and positive rake angles are to be avoided.
Cermets
Stable. Moderately expensive. Another cemented material based on titanium carbide (Tic). Binder is usually nickel. It provides higher abrasion resistance compared to tungsten carbide at the expense of some toughness. It is far more chemically inert than it too. Extremely high resistance to abrasion. Used primarily on turning tool bits although research is being carried on producing other cutting tools. Hardness up to about HRC 93. Sharp edges generally not recommended.
Cubic boron nitride (CBN)
Stable. Expensive. Being the second hardest substance known, it is also the second most fragile. It offers extremely high resistance to abrasion at the expense of much toughness. It is generally used in a machining process called "hard machining", which involves running the tool or the part fast enough to melt it before it touches the edge, softening it considerably. Used almost exclusively on turning tool bits. Hardness higher than HRC 95. Sharp edges generally not recommended.
Diamond
Stable. Very Expensive. The hardest substance known to date. Superior resistance to abrasion but also high chemical affinity to iron which results in being unsuitable for steel machining. It is used where abrasive materials would wear anything else. Extremely fragile. Used almost exclusively on turning tool bits although it can be used as a coating on many kinds of tools. Sharp edges generally not recommended.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Copyright © 2012-2035 厦门鑫时器科技有限公司 版权所有
闽ICP备2023009579号-1 技术支持:机械网站建设  Powered by Discuz! X3.4
快速回复 返回顶部 返回列表