一.什么是激光加工
激光加工是目前最先进的加工技术,它主要利用高效激光对材料进行雕刻和切割,主要的设备包括电脑和激光切割(雕刻)机,使用激光切割和雕刻的过程非常简单,就如同使用电脑和打印机在纸张上打印,在利用多种图形处理软件(CAD、CorelDraw等)进行图形设计之后,将图形传输到激光切割(雕刻)机,激光切割(雕刻)机就可以将图形轻松地切割(雕刻)到任何材料的表面,并按照设计的要求进行边缘切割。
随着激光加工的领域日益扩大,激光加工的名词越来越多了,比如:激光打标加工、激光雕刻加工、激光镭射加工、激光切割加工、激光焊接加工……一般激光加工可以分为在所有金属材料和所有非金属材料上打标,激光打标加工一般是振镜式的激光头,其优点是:速度快,精度高,一般激光雕刻加工是步进电机式的,相对来说他的速度和精度要差些。但现在也有一种是带振镜的,利用步进电机做移动幅面,于是就出现了大幅面CO2激光雕刻机加工,它是利用了YAG激光打标机和CO2激光雕刻机的结合,他集合了所有优势,唯一缺点是不能雕刻金属材料。
激光加工
二.激光产生原理
1.了解激光产生原理,我们必先了解物质的结构,与及光的辐射和吸收的原理。
原子的中心是原子核,由质子和中子组成。原子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着原子核运动。有趣的是,电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的「能阶」,不同的能阶对应于不同的电子能量。为了简单起见,我们可以如图一所示,把这些能阶想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道 (也是最近原子核的轨道) 最多只可容纳2 个电子,较高的轨道则可容纳 8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的,但它足以帮助我们说明激光的基本原理。
2.原子内电子的跃迁过程
当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原 子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式﹕
1.自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 (a)。
2.自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较低能阶 (b)。
3.受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子(c)
3.红宝石激光的示意图
激光基本上就是由第三种跃迁机制所产生的。图三显示红宝石激光的原理。它由一枝闪光灯,激光介质和两面镜所组成。激光介质是红宝石晶体,当中有微量的铬原子。在开始时,闪光灯发出的光射入激光介质,使激光介质中的铬原子受到激发,最外层的电子跃迁到受激态。此时,有些电子会透过释放光子,回到较低的能阶。而释放出的光子会被设于激光介质两端的镜子来回反射,诱发更多的电子进行受激辐射,使激光的强度增加。设在两端的其中一面镜子会把全部光子反射,另一面镜子则会把大部分光子反射,并让其余小部分光子穿过﹔而穿过镜子的光子就构成我们所见的激光。
红宝石激光
4.
粒子数反转的状态产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例,原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受激辐射由亚稳态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。
5.普通灯光与激光的比较激光透过受激辐射产生,有以下三大特性:
1.激光是单色的,在整个产生的机制中,只会产生一种波长的光。这与普通的光不同,例如阳光和灯光都是由多种波长的光合成的,接近白光。
2.激光是相干的,所有光子都有相同的相,相同的偏振,它们迭加起来便产生很大的强度。而在日常生活中所见的光,它们的相和偏振是随机的,相对于激光,这些光就弱得多了。
3.激光的光束很狭窄,并且十分集中,所以有很强的威力。相反,灯光分散向各个方向转播,所以强度很低。
四.激光加工的应用
根据激光束与材料相互作用的机理,大体可将激光加工分为激光热加工和光化学反应加工两类。激光热加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。包括光化学沉积、立体光刻、激光刻蚀等. 由于激光具有高亮度、高方向性、高单色性和高相干性四大特性,因此就给激光加工带来一些其它加工方法所不具备的特性。由于它是无接触加工,对工件无直接冲击,因此无机械变形;激光加工过程中无“刀具”磨损,无“切削力”作用于工件;激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小。因此,其热影响的区小工件热变形小后续加工最小;由于激光束易于导向、聚焦、实现方向变换,极易与数控系统配合、对复杂工件进行加工因此它是一种极为灵活的加工方法;生产效率高,加工质量稳定可靠,经济效益和社会效益好。
激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。
激光切割:
激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。激光切割是应用激光聚焦后产生的高功率密度能量来实现的。与传统的板材加工方法相比,激光切割其具有高的切割质量、高的切割速度、高的柔性(可随意切割任意形状)、广泛的材料适应性等优点。
激光焊接 : 激光焊接是激光材料加工技术应用的重要方面之一,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功地应用于微、小型零件焊接中。与其它焊接技术比较,激光焊接的主要优点是:激光焊接速度快、深度大、变形小。能在室温或特殊的条件下进行焊接,焊接设备装置简单.
五.激光加工的特点:
(1) 可对绝大多数金属或非金属材料进行加工。(2)激光是以非机械式的“刀具”进行加工,对材料不产生机械挤压或机械应力,无"刀具"磨损,无毒,很少造成环境污染。 (3)激光束很细,使被加工材料的消耗很小。 (4) 激光加工时,不会像电子束轰击等加工方法那样产生X射线,也不会受电场和磁场的干扰。 (5) 操作简单,使用微机数控技术能实现自动化加工,能用于生产线上对零 部件进行高速度高效率地加工,能作为柔性加工系统中的一部分。 (6) 使用精密工作台能进行精细微加工。 (7) 使用显微统或摄像系统,能对被加工表面状况进行观察或监控。 (8) 可穿过透光物质(如石英、玻璃),对其内部零部件进行加工。 (9) 可以利用棱镜、反射镜系统(对于Nd:YAG激光器还能用光纤导光系统)将光束聚集到工件的内表面或倾斜表面上进行加工。 (10) 能标记条形码、数字、字符、图案等标志。 (11) 这些标志的线宽可小到12Mm、线深度可达10Mm以下,故能对"毫米级"尺寸大小的零件表面进行标记。
六.激光加工的产品
1.打印机 2.雕刻机 3.激光器 4.激光灯 5.激光笔 6.激光武器
|