m_xiang 发表于 2020-7-7 16:50:01

精密3D打印构建仿生麦芒分级系统用于高效雾水收集

雾水收集对解决水资源短缺具有重要的意义,如何提升雾水收集效率一直是研究热点。高效的雾水收集需要同时满足高效捕捉和快速传输两个严苛的条件。受大自然启发,制备合适的仿生系统被认为是实现这两个严苛条件的有效方法。然而,目前制备的仿生系统结构单一,精度较低,无法实现高效的雾水收集。近日,西南科技大学李国强教授领导的仿生微纳精密制造团队,受小麦麦芒启发,利用PμSL3D打印技术(深圳摩方材料科技有限公司,nanoArch S130)构造了仿生麦芒分级系统,实现了高效的雾水收集。经过优化设计的仿生麦芒雾水收集系统,表面分布有众多微型刺状取向收集器,扩大了收集的有效面积,增强了雾滴捕捉效率,并突破传统结构下滴状传输的限制,实现了高速的膜状传输,极大地提高传输速度和收集效率。该系统的水雾收集效率可达5.9g/cm2·h,有望应用于液滴传输、药物运输、细胞牵引、海水淡化等科学技术领域。http://mp.ofweek.com/data/images/nanjixiong/2020-07-07/b07345326838f30d7c30ff4b4cd02bab.png图1 自然麦芒结构特征、雾水收集过程及仿生麦芒系统的制备过程。a.小麦麦芒捕捉潮湿空气中的小水滴。b.麦芒逆重力超快雾滴输运过程。c-e. 自然麦芒的分级结构SEM表征。f. PμSL 3D打印系统制备仿生麦芒分级系统的示意图。http://mp.ofweek.com/data/images/nanjixiong/2020-07-07/8b15cad5bebbfe9339058f8887551aaa.png图2 自然麦芒与仿生麦芒的结构特征及演变规律。a-c.自然麦芒表面微刺、凹槽的结构特征统计曲线图。d-e.5种不同结构形式仿生系统示意图。f-g. 不同结构形式仿生系统的表征。h.仿生麦芒随微刺数目增加的结构演变示意图。
要点:小麦麦芒可从潮湿空气中捕捉微小雾滴作为水分供给。这种高效的雾水收集能力主要是源于表面的锥形脊柱、梯度凹槽、方向性刺集成的分级微纳系统。通过对结构特征的分析,借助PμSL打印技术的高精度性、自由性对结构进行拆解、重新整合,并根据结构的演变过程优化构建模型,编程调控制备了不同结构形式的仿生系统,包括仿生脊柱系统(A-spine)、仿生凹槽系统(A-grooves)、仿生麦芒系统体系(A-awn-2、A-awn-3、A-awn-4)。
http://mp.ofweek.com/data/images/nanjixiong/2020-07-07/694da615a2dcfee9feac73e2b3eb2d00.png图3 不同结构形式仿生麦芒的雾水收集过程。a-e. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)在水雾环境下逆重力的雾滴捕捉输运过程。http://mp.ofweek.com/data/images/nanjixiong/2020-07-07/2abed938b2c29dee1b25c2f3e10c1b2a.png图4 仿生麦芒的水雾收集作用机理。a-c. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)逆重力下的雾滴运输距离、速度、体积的统计曲线图。d-f. 仿生脊柱、仿生凹槽、仿生麦芒体系的雾水收集机理分析。要点:通过在水雾环境下观察,在仿生脊柱与仿生凹槽结构表面,雾滴以大液滴的形式进行定向地输运——滴状传输。但在仿生麦芒系统体系表面,无明显大液滴出现,相反雾滴是以一层薄水膜进行定向输运——膜状传输。液体传输模式的转变主要是受表面微结构所影响。脊柱与凹槽单级仿生结构系统,难以实现对雾滴快速高效的捕捉,无法在表面形成连续稳定的液体薄膜,所捕捉液滴易受周围液滴的吸引合并成大液滴进行传输。当其体积增大到某数值时,结构所产生的拉布拉斯力无法继续驱动液滴运动,最终钉扎在表面。而仿生麦芒分级系统体系,由于表面附加了众多的微型刺状取向收集器,增强了雾滴捕捉能力,实现快速的润湿过程,在表面形成连续稳定的液体薄膜。且与表面其他微滴合并凝结相比,微滴在水膜表面滑动的所需时间更短,因此更倾向于沿水膜表面运动,使得传输速度和收集效率得到显著的提升。实验结果表明,膜状传输的速度要比滴状传输高40倍,可实现3.5 mm/s的传输速度和 5.9 g /cm2·h的收集效率。
页: [1]
查看完整版本: 精密3D打印构建仿生麦芒分级系统用于高效雾水收集