xyzabc 发表于 2013-10-31 23:14:36

干数控的前景怎么样?

谁能告诉我干数控的前景怎么样

herui1012 发表于 2013-10-31 23:15:14

现在中国的机床很差的,尤其是精密超精密机床、大型车铣床等机床那个有人家的好啊?它们那个不是数控机床??普通机床好像前途越来越差了。个人认为机床的发展方向是精密和大型两个方向发展,但是这些机床中间数控机床占更重要的地位。不论是数控的数控系统还是机床主机本身,我国的和国外的都有很大的差距,国家落后的地方就有我们的发展空间。
还有,像医疗器械,航天,智能等方面国内外都还没有发展成熟,都还有大量的问题没有解决,所以干数控的真有好大的空间的。
这些只是我的愚见,附带一个关于数控的资料你看看。

herui1012 发表于 2013-10-31 23:16:36

晕了,怎么没有办法发附件的啊 ?? 只好考进来了 数控技术崛起中的反遏制和技术对抗   装备制造业的崛起是对中国工业现代化和国家综合国力提升的重要支持。制造业进步一方面提升物质生产能力,解决关键装备的制造问题,另一方面制造业的共性技术军民两用,对国防和国家安全意义重大。数控技术是支持现代装备制造业的关键技术群,直接决定制造装备的功能和性能,是信息化带动工业化进程中装备层的关键技术,属于支持先进制造技术的重要基础技术群。而且数控技术以高精度随动控制和多运动协同控制为主要特征,与自动火炮控制、雷达控制以及陀螺导航控制技术具有共性的技术基础,具有典型的军民两用的应用特征。 1、国际竞争环境对中国数控技术崛起的遏制 正是因为数控技术军民两用的特征,国际竞争环境对中国数控技术崛起的遏制意图明显。从“巴统”到考克斯报告的技术封锁阶段,到通过合资办厂,本地化生产,低端产品倾销,涣散中国国内的自主研发力量均可体现遏制意图。相当多的事实证明我们试图通过引进技术,“以市场换技术”的美好愿望只是一厢情愿,结果往往是市场也丢了,技术却没换回来。目前以日本FANUC和SIEMENS为首的控制器巨头的产品垄断市场80%以上,高端产品不仅垄断,而且限制中国进口。中国通过近20年持续不断的技术攻关和市场培育,诞生了一批数控厂商,在中低端市场打开局面,形成了一定市场规模;但在技术密集的中高端控制器市场,国产控制器规模始终处于被压缩的状态,利润空间被压缩,研发体系不能支持可持续技术进步。 行业专家坦言“中国数控机床技术水平与世界发达国家相差起码15年”。日本国际经济学家长谷川庆太郎,在日本《呼声》月刊2005年5月号上发表了一篇题为《中国的未来取决于日本》的文章。文章说,在汽车制造业,生产汽车部件的机床年均工作时间高达3500小时,也只有日本制造的机床能保证连续5年性能不变。“没有日本的机床,中国的汽车产业将寸步难行”。 长谷川庆太郎预测:中国对日本的依赖只会越来越加强而不会越来越削弱。这就意味着“日本越来越有能力控制中国”。客观分析这篇文章,抛弃日本少数学者狂躁的心态,仅就装备制造业中以数控系统为代表的制造装备关键部件技术和产品上的差距上看,文章的观点是应当唤起我们的忧患意识。 2、数控技术具有突破遏制的技术条件和产业条件 打破国外对我们数控技术遏制的主要手段就是降低对国外技术的依存度,选择有技术支持条件的关键技术作为突破口,主动突破,才能争取竞争上的主动。数控技术在近十年计算机软硬件技术和通信技术进步的支持下,具备关键技术突破口的条件。从产业的角度看数控控制器产品的基本特征,可以概括为专用的工业计算机;伺服驱动系统产品的特征是驱动电机专用的工业电源;伺服电机产品的特征是装有高精度位置反馈原件的高精度电机。针对这些产品特征,从产业角度看,中国完全具备高端数控系统产业条件的,有些具有类似产业特征的产品的产能是世界领先的。因此,跳出狭义的运动控制器制造领域,从中国产业全局看,数控系统产业突破是具有产业支持条件的。数控系统产业的另一个特征是技术的软件化。运行在数字控制器和伺服驱动器上的软件承载了系统的主要功能和性能的实现。因此在这一产业领域的竞争将更多转化为基于软件技术、控制技术和制造技术的智力层面的比拼和以技术融合为特征的工程层面的比拼。 3、突破技术遏制的关键是建立适合核心技术体系生长的自主创新平台 反遏制的关键是构建适合核心技术体系生长的自主创新平台,从被动的技术追赶变为主动的技术对抗。高端数控技术不仅仅是控制器的问题,而是关联电机、驱动、测量、通讯、计算机软硬件技术以及机床测试、仿真等技术的技术学科群。这些技术环节都将对最终的设备控制效果产生影响。 以高速高精度高响应运动控制为例来说明这个问题。从FANUC公开的材料上看,控制分辨率提升到纳米可以将被加工产品的精度提高一倍,表面质量提高一倍。但这一结果需要控制器全面的技术提升。对于高速度运动控制技术的实现而言,基于超前读机制的运动轨迹分析和预测是必需的。这一机制将对系统的体系结构提出更高的要求。轨迹平滑和加加速度控制都是在高速运动控制中避免冲击的必要技术手段。插补器的计算精度要从1个um提升到1个nm,计算字长要增加三位,有效计算精度要提升3个数量级。软件平台要支持相应字长的计算。另一方面控制节拍也需要相应提高,否则单纯的指令精度提高没有意义。这当然对系统的计算负荷有更高的需求,系统硬件平台要具有更高的速度。仅在控制器内实现这个分辨率是不够的,还要将这个控制量送给伺服驱动装置。由于有效字长的扩充,控制节拍的提高,相应通讯代宽的需求也要提高。对伺服通讯问题一定要采用数字方式,脉冲方式和模拟加位置脉冲反馈的都不能符合要求。在伺服侧很显然要追求更高精度的控制问题。首先就是需要更高精度的位置反馈原件。目前国际上高精度伺服装置传感器已经提升到200万线-400万线了,这样才能够与现有的机械装置配合实现纳米级控制。我们国内的控制器产品的传感器大多在2000或2500左右。这种传感技术的差距直接导致我们的驱动装置的调速比上不去,速度平稳性有差距。高分辨率的传感器还面临另一个问题就是传感器接口问题。显然这种分辨率下不能用AB脉冲形式接口。能够保证控制器同步采样的高速数字通讯协议是必须要解决的问题。伺服本身高精度控制的问题也是必须要解决的问题。FANUC强调HRV(高响应矢量控制),三菱强调OMR(优化机械响应控制)都将问题直指高精度伺服控制的核心问题——高精度、快速响应的电流环设计。只有良好的电流环特性才能为良好的速度控制和位置控制奠定基础。在解决这一核心矛盾的过程中许多控制技术都可以有所作为,包括各种状态识别、滑膜控制和变参数控制等等。 实现高精度控制,仅依靠控制器和伺服驱动装置是不够的。电机设计本身就是直接影响运动控制效果的重要因素。对于永磁同步伺服电机而言,良好的反电势正旋性,很小的齿槽力将非常有利于伺服驱动器实现低速的平稳控制。许多高精度驱动装置的厂商本身也是电机制造商。在很多国内的研究机构中,电机技术与伺服驱动技术是部门割裂的,有的甚至没有电机技术支持单搞伺服驱动。在研究高精度运动控制中,仿真技术将极大的缩短我们在控制算法的相关研究中的时间和实施成本。在仿真技术支持的同时,还需要研制有关的试验平台,用来评价运动控制的效果,评价伺服驱动和电机的性能。例如,如何评价低速平稳性和刚度等。 上面仅以高速高精度运动控制技术为例说明高档控制器技术是一个耦合紧密的技术学科群。作为高端数控技术的技术创新体系应当具有技术链的完整性,因此我们称这样的技术创新体系为“技术创新平台”。这样的技术创新平台建设投入是巨大的。以日本FANUC 公司为例,在技术上保持领先,在产量上居世界第一,该公司现有职工3674人,科研人员超过600人,月产能力7000套,销售额在世界市场上占50%,研发投入为销售额的10%,每年投入研发费用上亿美元。很显然,支持上述平台在中国现有的科研条件下,依靠一家企业或单位是非常困难的。我们只有通过包括高等院校和其他研究机构在内,以产业链和技术联为内在联系的企业技术创新联盟,整合技术资源,形成新型的产学研创新组织,在国家有关政策支持和指导下实现相关多技术紧密耦合的创新技术平台,才可能实现技术跨越。 4、把握数控核心技术的发展动向 充分利用通用技术领域的新技术手段,把握数控核心技术的发展动向,有所为有所不为。处于后进竞争状态的中国装备控制器产业必须充分利用新的技术手段,把握数控技术的发展方向,根据自己的实际情况,有所为有所不为,形成后发优势,加快技术进步的步伐,才能实现追赶和跨越。 首先需要明确中国数控技术需要的发展方向。我们可以从SIEMENS数控系统对华出口限制的方向中受到启发。这些功能绝大多数十被认为直接影响欧洲装备核心竞争力的功能。 SIEMENS的数控系统专门分为出口型和标准型。出口型中对大量功能群进行了限制。非欧盟用户采购这些功能,需要获得德国或欧盟的正式许可。 分析上述功能,可以概括高端控制器几个重要的技术方向: 复杂运动规律的控制技术。上表中的“螺旋线插补2D+6”、“5轴加工程序包”、“多轴插补(4轴)”都属于这一技术方向。复杂型面和曲线的运动控制属于数控基础中的基础技术,也是负责工艺装备的现实需求。特别是五轴加工控制技术,是复杂曲面加工的基础支持技术。该技术是关系到航空航天制造业、武器装备制造业、动力装备制造业的关键技术。 多轴耦合关系运动控制。上表中的“搬运(机器人)变换包”,“位控循环中的1D3D间隙控制”,“悬垂度补偿,多维”,“主动数值耦合和曲线列表插补”,“电子齿轮单元”,“连续修正”,“测量2级”都体现了上述特征。上述功能的共性特征是某坐标轴运动不再是受计划性轨迹执行,而是与其他轴的运动或逻辑量具有某种耦合关系或者协同关系,即实时插补过程还引入了其他控制因素。上述功能显然对于复杂装备是非常必要的,属于经典插补运动控制的重要补充。 开放式结构。上表中的“开放式结构NC核心编译循环”和“同步操作”都属于这一技术方向。“开放式结构NC核心编译循环”引擎支持用户将自己编写的控制功能加入系统中,并可按照指定的执行频度周期性执行。而“同步操作”是用户以高级语言的形式约定执行条件和执行动作。这两项功能分别体现了控制系统不同层次的开放,一种是执行引擎的开放,另一种是用户语言层面的开放。这类的技术显然有利于主机厂的快速响应工艺需求,将自己专有的技术融入到控制器中,二次开发具有自己特色的控制器,极大地拓展了控制器的控制能力。 与伺服控制技术的融合。上表中的“内部驱动变量评价”就属于这一技术方向。伺服驱动装置的性能直接影响整个数控系统的控制表现和整个装备的性能表现。因此,伺服驱动相关技术也成为高端控制器技术群的重要基础。由于伺服驱动装置嵌入式系统的特点,运算资源、存储资源和人机交互能力的局限性,伺服系统参数的可视化和优化需要通过上位的数字控制器来实现。因此,控制器技术与伺服驱动技术的技术融合就成为数控技术发展的重要方向。这一技术特点可以从许多控制器产品中得到映证。 上述四大技术方向对数字化装备的进步非常重要。我国的数控技术在上述方向基本上存在较大的差距,应当成为我们努力的方向。 5、突破技术遏制的技术策略 在技术实施的策略上,充分利用通用技术领域的新技术手段是重要的技术策略。近十年来计算机软硬件技术的进步为我们在数控技术领域实现追赶和跨越提供了重要的支持。高性能的CPU为控制计算提供了更强的计算资源,同时也简化了系统的硬件体系结构。多样的嵌入式操作系统为控制器软件提供了方便的应用接口。包括工业现场总线技术的计算机通信技术大幅度提升了控制器内部互联和外部互联信息带宽。软件工程技术的日趋成熟为软件质量的保障和软件体系结构的可持续发展提供了指导。电力电子技术的进步为更大功率的伺服驱动提供了安全可靠的支持。上述技术仅是近十年工程技术领域进步的很小部分,充分关注工程技术领域通用技术的进步,使新技术成为我们的后发优势,对于我们加速技术追赶实现技术跨越意义重大。 在技术实施策略上,充分实现制造技术、控制技术和计算机技术的融合是重要的技术策略。制造技术、控制技术和计算机技术的融合是符合数控技术链的技术特征的。制造技术是数控技术需求的源泉,开发符合中国产业模式和制造技术特点的控制器是拉动国产控制器技术进步的重要动力,也是发挥控制器竞争优势的基本出发点。控制技术是数控技术的主体内容,是技术链的核心。计算机技术是数控技术的重要支持。一方面在计算机仿真技术支持下,通过对制造过程的物理过程仿真,为控制技术提供基本的控制模型和控制策略的依据;另一方面计算机技术也是控制技术实施的重要载体。因此,在数控技术学科群建设和技术链链接过程中要充分实现制造技术、控制技术和计算机技术的融合。 6、结论 我国的数控技术的进步和发展除了技术本身的问题外,还需要国家政策的鼓励和扶持,以及制造装备厂商的支持。特别是要解决首台首套的应用示范工程,一方面将国内外数控技术水平的差异量化,明确国产控制器的努力方向;另一方面,打破进口品牌的神话,为国产品牌的数控产品的应用推广提供机遇。中国的数控技术赶超世界先进水平是任重而道远,相信在建设创新型国家的社会氛围下,通过以企业为核心的新型产学研创新模式组织下,充分利用通用技术领域的新技术手段,实现制造技术、控制技术和计算机技术的融合,通过坚持不懈的努力,自主创新,逐步打破技术封锁和遏制,加速技术进步,是大有希望的。

wodeshijiejjliu 发表于 2013-10-31 23:17:06

都说得很好,我再补充两句,无论做什么要靠实力,得真正掌握这门技术,踏实的去做,学好了自然就有用武之地,先别问是哪国的技术,我们现在讲究“拿来主义”,如果我们操作都学不会谈何去给人家比技术,所以别问有没有“前景”“前途”,闷头学会了再说!

yaran 发表于 2013-10-31 23:17:43

对!闷头学会了再说!
页: [1]
查看完整版本: 干数控的前景怎么样?