锻压中防止白点产生的对策
由于白点主要是由于钢中氢和组织应力共同作用下引起的,因此设法除氢和消除组织应力就可以避免白点的产生。其中首先应是除氢。最彻底的办法是从熔炼工艺着手,使氢在钢中的含量减少到不至引起白点的产生。严格控制炼钢操作过程,采用真空浇注等是很有效的措施。如果炼钢过程中氢含量不能控制在2cm3/100g以下,则必须在锻后采用合理的除氢冷却规范,决不允许锻后直接空冷到室温。压力加工的钢材如果不存在白点,以后用这些钢坯锻成的锻件就不会再出现白点。因此对锻造来讲,关键问题是制定合理的锻后冷却规范。为了消除白点,制定冷却规范的主要原则是:在尽量减小各种应力(相变组织应力、变形残余应力及冷却温度应力等)的条件下在氢扩散速度最快的温度区间,长时间保温,使氢能从钢锭中充分扩散出来。具体的措施是采用等温退火。
对马氏体类钢,在等温转变时,有两个温度范围奥氏体稳定性很小,分解速度最快。一个是600~620℃(保温15h奥氏体可分解20%);另一个是280~320℃(16min内奥氏体可分解95%。试验证明,在这两个奥氏体分解比较快的温度范围内,氢扩散的速度也是最快的。图3-39为氢的扩散速度与温度的关系曲线。体心立方晶格的铁素体比面心立方晶格的奥氏体可溶解的氢少。在600~620℃长时间保温,进行等温退火时,钢的塑性较好,同时温度应力、相变应力较小,较安全,但时间要很长。在280~320℃作等温退火,奥氏体分解快、需要的时间短,但相变应力和温度应力较大,材料塑性较低,对较大的锻件,如控制不好易出现裂纹。另外,较大截面的锻件,中心部分的氢也很难扩散出去。因此,对铬镍钼钢的大锻件,一般采用起伏的冷却规范,既能充分除氢,尽量减小应力、又能提高效率。图3-40为34CrNiMoφ1030mm转子锻件的冷却曲线。该曲线的主要特点是:①锻后先保温一段时间,使锻件内外温度均匀,以消除变形不均匀引起的残余应力和冷却时的温度应力。然后缓冷至略高于马氏体开始转变温度Ms,这时奥氏体不是分解为脆性的马氏体,而是韧性较好的贝氏体,相变应力较小,在稍高于Ms点保持一段时间,使奥氏体充分分解,使氢充分向外扩散。但因温度低,氢气析出只在表面,锻件中心部分仍保留较多的氢;②将锻件再加热到重结晶温度以上,并保温,使氢由含量多的心部向含量少的表面扩散,亦即使氢含量沿截面较均匀地分布;这时由于重结晶的作用使锻件的晶粒细化,为最终热处理创造较好的条件;③再次缓冷到Ms点以上,氢从表面扩散出去,而中心部分仍被保留着;④为使组织全部转变为索氏体,将锻件加热到600~650℃并进行充分保温,一方面使奥氏体充分分解,另一方面使中心的氢尽量向表面扩散。
图3-39氢的扩散速度与温度的曲线
图3-40 34CrNiMo转子等锻件冷却曲线
34CrNi3Mo钢对白点很敏感,而且转子锻件截面较大,所以工艺较复杂。对其他锻件,冷却曲线应根据钢种和尺寸具体确定。
对珠光体类钢锻件,锻完后冷却到Ac1以下50~150℃,使奥氏体分解为珠光体,再加热到Ac1以下20~50℃,长时间保温(根据锻件尺寸大约几小时到十几小时,保温过程中使组织应力充分消除,并使氢逸出),然后缓慢冷却;或者锻后冷却至Ac1以下50~150℃,再热至Ac3以上20~30℃(过共析钢为Ac1以上20~30℃)保温,再冷却至Ac1以下50~60℃长时间保温,以后缓慢冷却。在奥氏体已转变为珠光体的情况下,在靠近Ac1点保温可使氢较快地逸出。
文章关键词: 锻压 缺陷
页:
[1]